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This work presents an alternative analysis of the integrated rate equations corre-
sponding to the simple Michaelis-Menten mechanism without product inhibition. The
suggested new results are reached under a minimal set of assumptions and include,
as a particular case, the classical integrated Michaelis–Menten equation. Experimen-
tal designs and a kinetic data analysis are suggested to the estimation of the maxi-
mum steady-state rate, Vmax, the Michaelis–Menten constant, Km, the initial enzyme
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concentration, [E]0, and the catalytic constant, k2. The goodness of the analysis is
tested with simulated time progress curves obtained by numerical integration.

KEY WORDS: Enzyme kinetics, Michaelis–Menten, integrated equation, product rate,
substrate rate, numerical integration

1. Introduction

The simple Michaelis–Menten reaction mechanism shown in scheme 1 (see
below) is the most widely used in enzyme kinetics analysis, in spite of only few
enzyme reactions evolve according to this mechanism. In scheme 1, E denotes
the free enzyme, S the substrate, E S the complex enzyme–substrate, and P is
the product of the reaction and k1, k−1 and k2 the rate constants corresponding
to the elementary reaction steps. The steady-state parameters describing scheme
1 are the maximum initial rate, Vmax (i.e. k2[E]0, [E]0 being the initial enzyme
concentration), the catalytic constant, kcat (i.e. k2) and the Michaelis–Menten
constant Km [i.e. (k−1 + k2)/k1]. The reason for the wide use of scheme 1 is
that most of the enzyme systems can be apparently described by means of the
same equations corresponding this scheme, but using apparent maximum initial,
apparent catalytic constant and apparent Michaelis–Menten constant, which are
composed of algebraic combinations of the individual rate constants.

E + S              ES              E + P  k1 k2 

k-1 

Scheme 1.

The most frequently used equation related with reaction mechanisms fit-
ting scheme 1 is the called Michaelis–Menten equation which gives the initial
steady-state rate, v, of product formation, P , at the steady-state of the reaction
as a function of the initial enzyme and substrate concentrations, the rate con-
stant k2 and the global kinetic parameter Km [1,2]. By deriving this equation,
it is assumed that the initial substrate concentration remains approximately con-
stant during the reaction time assayed. To reach experimentally this condition it
is necessary and sufficient that the initial substrate concentration, [S]0, is much
higher than that one of the free enzyme, [E]0, and that the reaction time assayed
is such that the product concentration at this time, [P] is much less than the ini-
tial substrate concentration, e.g. [P] = 0.05[S]0.

But under some experimental situations can be not advisable to restrict
the reaction extension to a small reaction progress. Some examples of these
situations are: (1) Km is very small. In this case, the initial concentration of the
substrate used must be also very small in order to the product rate is [S]0-depen-
dent and thus can use the steady-state rate equation. But if [S]0 is very small,
then, the concentration of the formed product is also very small and difficult
to measure and, moreover, the substrate concentration diminishes rapidly and
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the assumption of its constancy cannot more be made; (2) If the sensibility of
the method to measure the product concentration is small, then it is difficult
to detect small concentrations of product, i.e. small variations in the substrate
concentration and, therefore, is necessary to let the reaction to progress until a
considerable amount of substrate has been converted into product; (3) Some-
times the product concentration cannot be directly measured and indeed the loss
of substrate concentration must be measured, what might require a considerable
diminution of its concentration [3].

The above situations can be handlled by means of the actual so called clas-
sical Michaelis–Menten integrated rate equation which is generally used from the
steady-state up, assumed to be reached from t = 0, to the end of the reaction, i.e.
in the final phase of the reaction and also assuming that the initial enzyme con-
centration is much less than the initial substrate concentration [4–12]. Kellers-
hon and Laurent [13] gave methods for analysing the time course of an enzyme
system evolving according to scheme 1 when the concentration of the enzyme is
high and the derived the corresponding integrated equation for this situation and
which become the classical one of Michaelis–Menten in the case of very diluted
enzymes.

The different existent contributions about the Michaelis–Menten integrated
rate equation are focused to suggest experimental design and kinetic data analysis
to evaluate the kinetic parameters Km and Vm and sometimes also the individual
rate constants [6]. But, as far as we know, no contributions exist carrying out
neither procedures to evaluate from the time course progress of S and/or P the
enzyme concentration (apart from Km and Vm) nor a complete analysis about the
limits of applicability of the classical integrated rate equations used.

In our opinion, the Michaelis–Menten integrated equation for scheme 1
has some limitations which can be partially avoided if it would be possible to
obtain an equivalent equation using less simplifying assumptions than those used
by deriving the actual integrated equation. Therefore, the main purposes of this
contribution are as follows:

(1) To analyse the degree of approach of the actual Michaelis–Menten inte-
grated rate equation corresponding to scheme 1. For this purpose we
compare the predicted results from the actual integrated equation with
those obtained from numerical integration of the system of differential
equations describing the behaviour of the enzyme system.

(2) To derive new equations for scheme 1, in an integrated or differen-
tial form, that fits better to the simulated results and, therefore, that
improves the actual equation analysis.

(3) To suggest experimental designs and kinetic data analyses based
in the improved equations which allow us to estimate the kinetic
Km, Vmax, [E]0 and kcat(k2).
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2. Materials and methods

Simulated progress curves were obtained by numerical solution of the set
of differential equations (1)–(4), using arbitrary sets of rate constants and ini-
tial concentration values. This numerical solution was found by the Runge–
Kutta–Fehlberg algorithm [14–16] using a computer program implemented in
Visual C+ + 6.0 [17]. The above program was run on a PC-compatible com-
puter based on a Pentium III/450 MHz processor with 128 MB of RAM. Data
obtained in this way and the corresponding analytical solutions were plotted
using the SigmaPlot Scientific Graphing System for Windows Version 8.02 (SPSS
Inc.).

3. Kinetic analysis

The kinetic behaviour of enzyme systems evolving according to the reaction
mechanism in scheme 1 is given by the set of differential equations:

d[E]
dt

= −k1[E][S] + (k−1 + k2)[E S], (1)

d[E S]
dt

= k1[E][S] − (k−1 + k2)[E S], (2)

d[S]
dt

= −k1[E][S] + k−1[E S], (3)

d[P]
dt

= k2[E S]. (4)

Now we assume that the only species presents at the onset of the reaction
are E and S. Hence, the mass balances equations are:

[S]0 = [S] + [E S] + [P], (5)

[E]0 = [E] + [E S], (6)

where [E], [E S], [S] and [P] mean the instantaneous concentrations of E, E S, S
and P , respectively, and [E]0 and [S]0 the initial concentrations of E and S,
respectively.

From the time at which can be assumed that the system has reached the
steady-state, during any elementary time interval, dt , between the reaction times
t and t + dt , the concentrations of S, E and E S remain approximately constant
and equal to their instantaneous values at reaction time t, [S], [E] and [E S].
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We will call the time from which the system can be considered in a (variable)
steady-state as tθ . The condition of each steady-state during the elementary time
interval dt is that E S is formed, approximately (non-equal), at the same rate it
disappears, i.e.:

k1[E][S] ≈ (k−1 + k2)[E S] (t ≥ tθ ). (7)

Obviously tθ � 0 because at t = 0 is [E S] = 0 and equation (7) is not fulfilled.
Note that relationship (7) could not be observed at the end of the reaction when
[S] → 0 before [E S] → 0. From equations (6) and (7) one obtains:

[E] ≈ Km[E]0

Km + [S] (t � tθ ), (8)

[E S] ≈ [E]0[S]
Km + [S] (t � tθ ), (9)

where Km is the well-known Michaelis–Menten constant:

Km = k−1 + k2

k1
. (10)

Equations (7) and (8) allows us to assume that for any elementary time inter-
val, dt , between t and t+ dt the system remains in at instantaneous steady-state
which infinitesimally changes from an interval dt to the next one between t+ dt
and t + 2dt , and so on.

This previous assumption allows us to carry out the following kinetic anal-
ysis furnishing both the substrate and product concentrations.

3.1. Relationship between [S] and [P] at any reaction time

If equation (9) is inserted into equation (5) we obtain, after some simple
algebraic steps, the following result:

[S] ≈ − (
Km+[E]0+[P]−[S]0

)+
√(

Km + [E]0 + [P] − [S]0
)2+4Km

([S]0−[P])

2
(t � tθ ),

(11)

which explicitly relates [S] with [P] or:

[P] ≈ [S]0 − [S]
(

1 + [E]0

Km + [S]
)

(t � tθ ), (12)

which explicitly relates [P] with [S].
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3.2. Relationship between d [S]/dt and d [P]/dt at any reaction time

If we derivate both sides of equation (5) with respect to time, t , we have:

0 = d[S]
dt

+ d[E S]
dt

+ d[P]
dt

. (13)

Hence, deriving both sides of equation (9) with respect to time we obtain:

d[E S]
dt

≈ Km[E]0

(Km + [S])2

d[S]
dt

(t � tθ ). (14)

If now equation (14) is inserted into equation (13), we get the following equation
(15) relating to the instantaneous rates, at a same reaction time, of the substrate
and the product:

d[S]
dt

≈ − 1

1 + Km[E]0
(Km+[S])2

d[P]
dt

(t � tθ ) (15)

or also:

d[P]
dt

≈ −
(

1 + Km[E]0

(Km + [S])2

)
d[S]
dt

(t � tθ ). (16)

3.3. Relationship between d [P]/dt and [S] at any reaction time

If in equation (4) we replace [E S] by its expression given in equation (9),
we have:

d[P]
dt

≈ Vmax[S]
Km + [S] (t � tθ ) (17)

from where:

[S] =
Km

d[P]
dt

Vmax − d[P]
dt

(t � tθ ). (18)
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3.4. Integrated rate equation

If we now replace in equation (17) d[P]/dt by its expression given in equa-
tion (16), the result is:

d[S]
dt

≈ − Vmax[S] (Km + [S])
(Km + [S])2 + [E]0Km

(t � tθ ). (19)

By integrating equation (19) one obtains the following relationship between [S]
and t :

Vmax(t − tθ) ≈ [S]θ − [S] + Km ln
[S]θ
[S] + [E]0 ln

[S]θ (Km + [S])
[S] (Km + [S]θ) (t � tθ), (20)

where [S]θ is the substrate concentration at any arbitrarily chosen reaction time
tθ at which the attainment of the steady-state is considered to have been reached.
Equation (20) implicitly relates [S] with t . If in equation (20) we insert equation
(11) we would have an implicit relationship between [P] and t .

4. Results and discussion

In the previous section, we suggest a new, improved, integrated rate equa-
tion [equation (20)] for scheme 1 alternative to that used actually for the same
reaction scheme. In this section, we analyse the applicability limits of both of the
actual integrated rate equations. Next we will carry out a comparative study of
the results obtained and we compare these results with those ones obtained by
numerical integration of the set of differential equations (1)–(4) describing the
kinetic behaviour of systems evolving according to scheme 1. Finally, we sug-
gest experimental designs and kinetic data analysis allowing the evaluation of
Km, Vmax, [E]0 and k2. For a better comprehension of this section, we begin it
remembering the major items in the derivation of the actual integrated rate equa-
tion of Michaelis–Menten for scheme 1.

4.1. The classical integrated Michaelis–Menten equation

The derivation of the actual integrated rate equation for enzyme reactions
evolving according to mechanisms as that in scheme 1 is based on the following
three implicit assumptions (a)–(c), which next we summarise.

Assumption (a). The steady-state of the reaction is reached from practically t =
0.

Using our notation this assumption means that tθ ≈ 0, [S]θ = [S]0 and
[P]θ = 0.
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Assumption (b). The rate of substrate disappearance is, at each reaction time,
equal to the formation rate of the substrate at the same time and this rate is
given by an equation formally analogous to that of Michaelis–Menten corre-
sponding to the steady-state but in which the initial substrate concentration,
[S]0, is replaced by the instantaneous one, [S], i.e.:

d[S]
dt

= −d[P]
dt

(t � 0), (21)

d[S]
dt

= − Vmax[S]
Km + [S] (t � 0). (22)

From equation (22) it results, after integration and some rearrangements:

Vmaxt = [S]0 − [S] + Km ln
[S]0

[S] (t � 0). (23)

Assumption (c). The amount of substrate consumed during the reaction time t is
equal to the amount of product formed during the same time t , i.e. the enzyme-
substrate complex concentration [E S], at any reaction time is ignored so that the
following relationship is assumed:

[S]0 − [S] = [P] (t � 0). (24)

Having equation (24) into account in equation (23), the later can be rewritten as:

Vmaxt = P + Km ln
[S]0

[S]0 − [P] (t � 0), (25)

which yet admits other arrangement forms, all of them equivalent. Equations
(23) and (25) are the two most frequently used forms of the integrated rate equa-
tion of Michaelis–Menten for scheme 1.

4.2. Limitations and applicability of the integrated rate equation (20) suggested
here

The kinetic analysis suggested by us in section 3 is based on the fullfil-
ment of infinite and successive instantaneous steady states each of them during
an infinitesimal time interval dt time which each of them binds to the follow-
ing elementary steady state during the reaction progress. In each of these elemen-
tary, virtual steady-state equation (7) showing that the formation rate of E S is
approximately equal to its transformation in E must be observed. Nevertheless,
this approach will not be observed until a certain reaction time is elapsed and
that was above denoted as tθ . For example, at t = 0 the formation rate of E S
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is k1[E]0[S]0 whereas the rate of E S transformation is zero and a certain time
must be elapsed before both rates, k1[E][S] and (k−1+k2)[E S], are approximately
equal and they remain approximately equal (although being different the values
of these rates at each reaction time because the changes in the [E]-, [S]- and
[E S]-values) during the whole course of the reaction.

Once defined conceptually the time tθ as the time at which the steady-state
is reached, an operational definition of it is needed. An operational definition
we suggest, and that we will call definition A, consists on taking as tθ the t-
value at which the system reaches the steady-state the first time from the onset
of the reaction. This time can be quantified as the time for which the quotient,
r , defined in equation (26), reaches the first time, from the onset of the reaction,
the unity value or the nearest to the unity value.

r =
[E][S]
[E S]
Km

= [E][S]
Km[E S] . (26)

To support this section, in table 1 we show, as examples, four cases of
enzyme systems evolving according to the reaction mechanism in scheme 1 which
only differ in the [E]0- and/or [S]0-values. In table 1 are also shown the time the
reaction elapsed to [P] = 0.9999[S]0, which we will take as the time the reac-
tion run, i.e. the time from t = 0 at which the reaction can be considered fin-
ished. In the following we will refer this time as t∞. From the simulated time
progress curves of each of these cases it is easy to determine the correspond-
ing tθ -values which are summarised in table 2. Note that this value is generally
small. Thus, with this operational definition tθ is the minimal value of the reac-
tion time from which the system remains (approximately) in a steady-state. The
values of [S] and [P] corresponding to this tθ -value are those of [S]θ and [P]θ .
The value of r corresponding to this tθ -value will be denoted as rθ . In table 2 we
show tθ -, rθ -, [S]θ - and [P]θ -values for each one of the cases in table 1 obtained
from the simulated time progress curves, i.e. from the numerical integration of
the set of differential equations (1)–(4). This definition has the advantage that
tθ can be unequivocally determined, but it has the inconvenient that it can only
determined from the simulated progress curves and has, therefore, a fundamen-
tally meaning theoretical. Thus, in the practice, other operational definitions are
needed.

A second operational definition, given arbitrarily and that we will call oper-
ational definition B, consists on taking as tθ any reaction time we assume it is
higher than the tθ -value corresponding to definition A. Below we show how to
determine if the reaction time chosen as tθ in definition B is higher (and there-
fore, adequate) than the tθ -value corresponding to definition A. The decision
about what reaction time to chose is obviously arbitrary. For example, it can be
chosen, from the time progress curve of S or P , as the reaction time correspond-
ing to a determined concentration of the substrate or product concentration.
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Table 1
Cases differing in the [E]0- and [S]0- values used as examples. In all cases the values of the
rate constants, chosen arbitrarily but in the usual rank in enzyme reactions, are k1 = 1 × 108

M−1 s−1, k−1 = 115 s−1 y k2 = 10 s−1. Therefore, the Michaelis–Menten constant, Km, in all
of the cases is 1.25×10−6 M. On the fourth–sixth columns the values of [E]0/Km, [E]0/[S]0
and Vmax corresponding to each case are indicated. On the last column is indicated the time
the reaction elapses to [P] = 0.9999[S]0 and that can be taken as the time the reaction is

ended, denoted as t∞.

Case [E]0(µ M) [S]0 (mM) [E]0/Km [E]0/[S]0 Vmax (µM s−1) t∞(s)

1 0.1 0.01 0.08 0.01 1 22.150
3 0.1 1 0.08 0.0001 1 1086.5
4 1 0.01 0.8 0.1 10 2.8366
7 10 0.01 8 1 100 1.0463

Table 2
Values of tθ , rθ , [S]θ and [P]θ for each of cases 1–7 in table 1 according to the definition A

explained in the main text.

Case tθ (ms) rθ [S]θ (µM) [P]θ (nM)

1 10.3 1.000 9.9028 8.3920
3 0.8036 1.000 999.56 337.56
4 8.5763 1.000 9.0540 67.349
7 6.2993 1.000 2.7515 372.45

In table 3 we shown the tθ for cases 1–7 in table 1 as the time the system
elapses to [S] = 0.95[S]0. Likewise, the tθ -value in definition B could be merely
chosen as any reaction time less than t∞ at which we consider that the sys-
tem already is in the steady-sate. Obviously, the less the chosen value for tθ
the more experimental data are available for the kinetic data analysis. In table
4 we have arbitrarily chosen tθ as the 10% approximately of the total reaction
time, t∞.

In figure 1, we show as example, the time course of the species involved in
scheme 1 for case 4 in table 1 and in figures 2(a)–4(a), we show the correspond-
ing time course of r for cases 4, 1 and 7 in table 1 obtained from the time pro-
gress curves of E, S and E S and equation (26).

4.3. Comparison of the validity of equations (20) and (23)

In figures 2(b)–4(b), we show the instantaneous values of the quotient, q,
given by equation (27)

q = Vmax(t − tθ )

[S]θ − [S] + Km ln [S]θ[S] + [E]0 ln [S]θ (Km+[S])
[S](Km+[S]θ )

(27)
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Table 3
Values of tθ , rθ , [S]θ and [P]θ for each of cases 1–7 in table 1 according to the definition B
explained in the main text taking as tθ the time the system elapses for [S] = 0.95[S]0 (there-
fore [S]θ = 0.95[S]0). On the third and fourth columns the corresponding values of rθ and
[P]θ are shown. Note that the tθ -value taken for cases 4 and 7 are not adequate because rθ

is far from the unity.

Case tθ (s) rθ [S]θ (µM) [P]θ (µM)

1 0.4614 0.9999 9.5 0.40797
3 49.961 1.000 950 49.897
4 0.7504 × 10−3 7.6655 9.5 0.0215
7 5.2795 × 10−5 144.46 9.5 1.3436 × 10−4

Table 4
Values of tθ , rθ , [S]θ and [P]θ for each of cases in table 1 according to the definition B
explained in the main text taking as tθ a value of the reaction time approximately equal to

a 10% of t∞.

Case tθ (s) rθ [S]θ (µM) [P]θ (µM)

1 1 0.9999 9.0296 0.8826
3 50 1.0000 949.96 49.935
4 0.15 0.9988 0.9711 1.2999
7 0.1 0.9391 73.637 5.4089

during the whole course from t = tθ for cases 1, 4 and 7 in table 1. The t-val-
ues and the corresponding [S]-values, were obtained from numerical integration
of the set of differential equations (1)–(4). The tθ - and [S]θ -values were those
in table 2. According to equation (20) this quotient should be ever equal to the

Figure 1. Time progress curves of E, E S, S and P corresponding to case 4 in table 1.
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(A)

(B)

Figure 2. (a) Time course of r corresponding to case 4 in table 1. We also indicate (– – –) the ideal
r value equal to the unity. Insert: Details at the onset of the reaction where the tθ -value arisen from
operational definition A is indicated. (b) Time course of q (—) and q ′(· · · · · · ) corresponding to case
4 in table 1. We also indicate (– – –) the ideal q- and q ′-values equal to the unity. Insert. Details
at the onset of the reaction where it is indicated the time (the tθ ) from which our analysis is valid.

unity if equation (20) would be observed. Thus, the nearer is q of the unity the
higher is the accuracy of equation (20).

To quantify the validity of equation (23) we define q’ as the quotient:

q ′ = Vmaxt

[S]0 − [S] + Km ln [S]0[S]
(t � 0). (28)

In figures 2(b)–4(b), we show the instantaneous values of the quotient, q ′, given by
equation (28) during the whole course of the reaction for cases 1, 4 and 7 in table
1. The t values and the corresponding [S] values to be inserted into above quotient
were obtained from numerical integration of the set of differential equations (1)–(4).
According to equation (23), this quotient should be ever equal to the unity. Thus, the
nearest is q ′ of the unity the higher is the accuracy of equation (23).
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(A)

(B)

Figure 3. (a) Time course of r corresponding to case 1 in table 1. We also indicate (– – –) the ideal
r value equal to the unity. Insert. Details at the onset of the reaction where the tθ -value arisen from
operational definition A is indicated. (b) Time course of q (—) and q ′(· · · · · · ) corresponding to
case 4 in table 1. We also indicate (– – –) the ideal q- and q ′-values equal to the unity. Left hand
insert: Details at the onset of the reaction where it is indicated the time (the tθ ) from which our

analysis is valid. Right hand insert: Details at the end of the reaction.

Briefly, from figures 2(b)–4(b) it is evident that the application of integrated
rate equation (20) is much more adequate, in all cases, that the actual integrated
rate equation (23). This result will be also confirmed from the kinetic data anal-
ysis suggested below.

4.4. Actual classical integrated Michaelis–Menten equations are particular cases
of that suggested here

Our integrated rate equation (20) contains, as a particular case, the actual
integrated rate equations (24) and (25). Effectively, due that it is ever observed
in equation (20) that [S] � [S]θ (equal at t = tθ and less at any time t > tθ ), the
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(A)

(B)

Figure 4. (a) Time course of r corresponding to case 7 in table 1. We also indicate (– – –) the ideal
r value equal to the unity. Insert. Details at the onset of the reaction where the tθ -value arisen from
operational definition A is indicated. (B) Time course of q (—) and q ′(· · · · · · ) corresponding to
case 7 in table 1. We also indicate (– – –) the ideal q- and q ′-values equal to the unity. Insert. Details

at the onset of the reaction where it is indicated the time (tθ ) from which our analysis is valid.

following relationship will be ever observed:

[S]θ
[S]

(Km + [S])
(Km + [S]θ ) � [S]θ

[S] (t � tθ ). (29)

So that in those cases in which it is fulfilled that:

[E]0/Km << 1 (30)

the following approach can be made:

Km ln
[S]θ
[S] + [E]0 ln

[S]θ (Km + [S])
[S] (Km + [S]θ ) ≈ Km ln

[S]θ
[S] (t � tθ ) (31)
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and equation (20) becomes:

Vmax(t − tθ ) ≈ [S]θ − [S] + Km ln
[S]θ
[S] (t � tθ ). (32)

Moreover it is to be note that if in equation (12) condition (30) is inserted, then
equation (24) is approximately fulfilled. If now we insert equation (24) into equa-
tion (32), it results:

Vmax(t − tθ ) = [P] − [P]θ + Km ln
[S]0 − [P]θ
[S]0 − [P] (t � tθ ). (33)

Note that if in equations (32) and (33) we set tθ = 0 and, therefore [S]θ = [S]0
and [P]θ = 0, these equations become equations (23) and (25), respectively, i.e.,
the actual integrated rate equations for scheme 1 are particular cases of equation
(20).

4.5. Kinetic data analysis: evaluation of Vmax, Km, [E]0 and k2

4.5.1. Revision of the methods based on the actual integrated rate equations (23)
and (25)

From actual integrated equation (23) a kinetic data analysis is suggested to
evaluate the kinetic parameters Vmax and Km [3]. Effectively, equation (24) can
be rearranged as:

1
t

ln
[S]0

[S] = − 1
Km

[S]0 − [S]
t

+ Vmax

Km
(t � 0) (34)

and, therefore, Vmax and Km could be obtained from the time progress curve
of S by plotting (1/t) ln([S]0/[S]) versus ([S]0-[S])/t , which results in a straight
line with the ordinate intercept Vmax/Km and with the slope -1/Km so that the
determination of Vmax and Km is immediate. But, due to the fact that very
approached character of equation (23) and, therefore, of equation (34), the men-
tioned plot exhibits a peculiar shape and the values of Km and Vmax obtained
considerably can differ from those ones which would have been obtained, i.e. the
real ones, as we shown using data obtained from numerical integration. In figure
5(a), we show the plots of (1/t) ln([S]0/[S]) versus ([S]0-[S])/t for case 4 in table
1. Note that the plot does not correspond to a straight line with a negative slope
until a certain reaction time ta , is elapsed. In table 5, we summarise the values
of Km and Vmax obtained from the portion of curve between points a and b in
the plot [the only which can be fitted to an equation like equation (34)]. In the
following we will refer to this method as IM(S).

Likewise, from actual integrated rate equation (25) a kinetic data analy-
sis is suggested to evaluate the kinetic parameters Vmax and Km [3]. Effectively,
from equation (25) we have that a plot of (1/t) ln([S]0/([S]0-[P])) versus [P]/t
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Table 5
Values of the parameters Km, Vmax, [E]0 and k2 obtained for cases 1–4 according to some of
the methods 1–3 described in the main text. The values obtained from the actual integrated
rate equation [either from both IM(P) and IM(S) methods or from one of them] are also
indicated. The true values of these parameters are summarised in table 1 and marked in this

one in bold on the first row of each case.

Case Method Km (µM) Vmax (µM s−1) [E]0 (µM) k2 (s−1)

1 1.25 1 0.1 10
1 1 1.2405 ± 0.0001 0.9979 ± 0.0008 0.0992 ± 0.0001 10.059 ± 0.019
1 2 1.3314 ± 0.0001 1.0317 ± 0.0001 0.0537 ± 0.0001 19.213 ± 0.038
1 3 1.2525 ± 0.0001 1.0001 ± 0.0001 0.0917 ± 0.0001 10.906 ± 0.013
1 IM(S) 1.4624 ± 0.0052 1.0471 ± 0.0067 – –
1 IM(P) 1.32254 ± 0.0006 1.0066 ± 0.0010 – –

3 1.25 1 0.1 10
3 1 1.2563 ± 0.0024 1.0000 ± 0.0001 0.1005 ± 0.0002 9.9502 ± 0.0208
3 2 1.2521 ± 0.0001 1.0007 ± 0.0001 0.0965 ± 0.0001 10.435 ± 0.012
3 3 1.2502 ± 0.0001 1.0000 ± 0.0001 0.0998 ± 0.0001 10.020 ± 0.011
3 IM(S) 4.7506 ± 0.1437 1.0052 ± 0.0610 – –
3 IM(P) 1.2509 ± 0.0093 1.0000 ± 0.0149 – –

4 1.25 10 1 10
4 1 1.1895 ± 0.0050 10.092 ± 0.0002 0.9849 ± 0.0050 10.247 ± 0.053
4 2 1.1909 ± 0.0002 9.6968 ± 0.0002 0.9445 ± 0.0003 10.267 ± 0.004
4 3 1.2627 ± 0.0001 10.007 ± 0.001 0.9438 ± 0.0008 10.603 ± 0.001
4 IM(S) 3.1289 ± 0.0084 14.143 ± 0.060 – –
4 IM(P) 2.1368 ± 0.0040 10.832 ± 0.035 – –

7 1.25 100 10 10
7 1 1.1390 ± 0.0057 118.15 ± 5.80 9.8170 ± 0.4859 12.035 ± 1.187
7 2 0.8886 ± 0.0344 39.679 ± 2.179 3.5135 ± 0.6212 11.293 ± 2.617
7 3 1.1116 ± 0.0004 97.466 ± 0.034 9.7656 ± 0.0012 9.9805 ± 0.0047
7 IM(S) (impossible to apply) – –
7 IM(P) 34.471 ± 0.1719 319.44 ± 0.08 – –

should be a straight line with the ordinate intercept Vmax/Km and the slope
−1/Km so that the evaluation of Vmax and Km is immediate. But, due to the
very approached character of equation (25), the mentioned plot exhibits a pecu-
liar shape [see figure 5(b)] and the values of Km and Vmax obtained considerably
can differ from those ones which would have been obtained. In figure 5(b), we
show the plot of (1/t) ln([S]0/([S]0-[P])) versus [P]/t for case 4 in tables 1 and
5, we summarise the values of Km and Vmax obtained from the portion of curve
between points a and b in the plot (the only which can be fitted to a straight
line with a negative slope). In the following, we will refer to this method as
IM(P).

Note that only suitable results by applyng methods IM(S) and IM(P) are
to be expected when equations (23) and (25) are justified, i.e. when condition
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(A)

(B)

Figure 5. (a) Plot of (1/t) ln([S]0/[S]) versus ([S]0-[S])/t from t = 0 for case 4 in table 1. Note that
only from t = ta = 0.3492 the plot approaches a straight line with positive ordinate intercept and
negative slope (Insert). This plot is needed to apply method IM(S). (b) Plot of (1/t) ln[S]0/([S]0-
[P]) versus [P]/t from t = 0 for case 4 in table 1. Note that only from t = ta = 0.3492 s the plot
approaches a straight line with positive ordinate intercept and negative slope. This plot is needed to

apply method IM(P).

(30) is observed. Thus, in case 4 where [E]0/Km = 0.8 the results are bad,
whereas in cases 1 and 3, where [E]0/Km = 0.08, the results are much better,
as indicated in table 5. In case 7, where [E]0/Km = 8.0 method IM(S) is inap-
plicable and method IM(P) gives an enormous error. Therefore, a strategy to use
methods IM(S) and/or IM(P) is to decrease the initial enzyme concentration.

4.5.2. Methods based on our results
Next, we suggest experimental designs and kinetic data analysis based on

other of our results in this paper to evaluate not only Km and Vmax, but also [E]0
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and, therefore, k2. We will distinguish three different situations: (a) One disposes
of the time course of S and P ; (b) One disposes of the time course of S, but not
that of P ; (c) One disposes of the time course of P , but not of that of S.

(a) One disposes of the time course progress curves of both S and P(method 1)

In this case, the procedure we suggest consists in the following steps (1)–(3).

(1) Equation (12) relating [P] with [S] can also be rewritten in the following
forms more adequate for our purpose:

[S]0 − [P]
[S] ≈ Km + [E]0 + [S]

Km + [S] (t � tθ ) (35)

or

[S]0 − [P]
[S] ≈ a + b[S]

1 + b[S] (t � tθ ). (36)

A fit by non-linear regression to the two parameters rational equation (36)
of the experimental data of [P] and [S] allows us to evaluate the parameters
a [which, according to equation (35) is equal to 1 + ([E]0/Km)] and b [equal
to 1/Km according to equation (35)]. Therefore, evaluation of Km and [E]0 is
immediate. In figure 6(a) we plotted the dependence of ([S]0-[P])/[S] on [S] for
case 4. From the values for a and b from the fitting to equation (36) we obtained
the values Km and [E]0.

(2) Hence, from the [E]0- and Km-values obtained above, the [S]-values at the
different reaction times, t , the tθ - and [S]θ -values, one plot of

[S]θ − [S] + Km ln
[S]θ
[S] + [E]0 ln

{ [S]θ
[S]

(Km + [S])
(Km + [S]θ )

}
versus (t − tθ ) gives,

according to equation (20) a straight line through the origin with the slope Vmax.
In figure 6(b) we plotted this dependence for case 4.

(3) From the Vmax– and [E]0-values above obtained the k2-value is immediately
obtained as the quotient Vmax/[E]0.

In table 5, we summarise the Km-, [E]0-, Vmax- and k2-values obtained
using this method for case 4.

(b) One disposes of the time course of S, but not of that of P (method 2)

From the time progress curve of S we construct the time progress curve of
(1/[S])(d[S]/dt). From equation (19) we have:

− 1
[S]

d[S]
dt

≈ a + b[S]
1 + c[S] + d[S]2

(t � tθ ), (37)
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(A)

(B)

Figure 6. Plots needed to apply method 1 suggested in this paper. (a) Plot of ([S]0-[P])/[S] versus
[S] from [S] = [S]θ for case 4 in table 1. A fit of this curve to equation (36) allows to determine the

parameters a and b involved. (b) Plot of [S]θ − [S] + Km ln [S]θ[S] + [E]0 ln
{ [S]θ[S]

(Km+[S])
(Km+[S]θ )

}
versus

t − tθ from t = tθ . for case 4 in table 1 (—). A fit of this plot to a straight line through the origin
(– – –) allows to determine Vmax equal to its slope.

where:

a = Vmax

Km + [E]0
, (38)

b = Vmax

Km(Km + [E]0)
, (39)

c = 2
Km + [E]0

, (40)
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Figure 7. Plot of -(d[S]/dt)/[S] versus [S] from [S] = [S]θ for case 4 in table 1 needed to apply
method 2 suggested in this paper. A fit of this curve to equation (37) allows determining the param

eters a, b, c and d involved.

d = 1
Km(Km + [E]0)

. (41)

Then a fit of the data (1/[S])(d[S]/dt) to the four parameters rational equation
(37) allows to evaluate a, b and c. By combining these values those of Km, Vmax,
and [E]0 are obtained [Km = a/b, Vmax = 2a/c, [E]0 = (2b-ac)/(bc)]. Hence,
from the Vmax- and [E]0-values, k2 is obtained because k2 = Vmax/[E]0.

In figure 7, we plotted the dependence of (1/[S])(d[S]/dt) on [S] for case
4. From the values for a, b and c obtained from the fitting to equation (36) and
from equations (38)–(40), the values of the kinetic parameters Km, Vmax, [E]0,
and k2 can be easily obtained. In table 5, we show these values for cases 3, 4
and 7. Obviously, this method 2 can also be applied when method 1 is possible.

(c) One disposes only of the time course of P (and, therefore, of its first deriva-
tive d[P]/dt), but not of that of S. (method 3).

If in equation (12) we insert equation (18) we have, after some algebraic
rearrangement:

[S]0 − [P]
d[P]

dt

=
a + b

d[P]
dt

1 + c
d[P]

dt

, (42)

where:

a = Km + [E]0

Vmax
, (43)
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Figure 8. Plot of ([S]0-[P])/(d[P]/dt) versus d[P]/dt from t = tθ for case 4 in table 1 needed to
apply method 3 suggested in this paper. A fit of this curve to equation (42) allows to determine the

parameters a and b involved.

b = − [E]0

V 2
max

, (44)

c = − 1
Vmax

. (45)

Thus, if we fit to equation (42) the experimental dependence of ([S]0 −
[P])/(d[P]/dt) on d[P]/dt we obtain the values of a, b and c and, from them,
those ones of Km, Vmax and [E]0.

In figure 8, we plotted the dependence of ([S]0-[S])/(d[P]/dt) on d[P]/dt
for case 4. From the values for a, b and c obtained from the fitting to equa-
tion (42) and from equations (43)–(45), the values of the kinetic parameters
Km, Vmax, [E]0, and k2 can be easily obtained. In table 5, we show these values
for cases 1–7. Obviously, this method 3 can also be applied when method 1 is
possible.

4.6. Choose of an adequate tθ -value

Methods 1–3 are based on the knowledgement of the tθ -value. In the results
summarised in tables 6 and 7 we have used in each case the tθ -value obtained
from the operational definition A (see table 2). Nevertheless, the results would
have been similar if we had taken, in each case, any other tθ -value higher than
the corresponding one from the operational definition A. But, as commented
above, the value experimentally chosen for tθ is always submitted to the doubt
whether it is correct or not, i.e. if at this time value the steady-state has already
been reached or it is not more observed. The kinetic data analysis here suggested
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Table 6
Values of Km, Vmax, [E]0 and k2 for case 3 obtained from the time progress curve of P , i.e.
by using method 3, but starting at the different t-values on the first column. The true values

of Km, Vmax, [E]0 and k2 are 1.25, 1, 0.1µM and 10 s−1, respectively.

tθ (s) Km (µM) Vmax(µM s−1) [E]0(µM) k2 (s−1)

0.8036 × 10−3 1.2502±0.0001 1.0000±0.0001 0.0998±0.0001 10.020±0.012
10.220 1.2502±0.0001 1.0000±0.0001 0.0983±0.0001 10.173±0.012
50.343 1.2502±0.0001 1.0000±0.0001 0.0982±0.0001 10.183±0.012

Table 7
Values of Km, Vmax, [E]0 and k2 for case 1 obtained from the time progress curve of P , i.e.
by using method 3, but starting at the different t-values on the first column. The true values

of Km, Vmax, [E]0 and k2 are 1.25µM, 1µM, 0.1µM and 10 s−1, respectively.

tθ (s) Km (µM) Vmax(µM s−1) [E]0(µM) k2(s−1)

0.0103 1.2525±0.0001 1.0001±0.0001 0.0917±0.0001 10.906±0.013
2.0115 1.2523±0.0001 1.0002±0.0001 0.0910±0.0001 10.991±0.013
5.0078 1.2536±0.0001 1.0003±0.0001 0.0897±0.0001 11.152±0.014

can help us to solve this dilemma. It would be sufficient to take as tθ some differ-
ent reaction times arbitrarily chosen and distributed on the total reaction time,
t∞. Any of the tθ -value belonging to a set of consecutive tθ -values giving all of
them similar results for Km and Vmax (by using the same method) than any other
tθ -value of the set might be taken as the tθ -value for the analysis (see tables 6–
9). In tables 6–8 we summarise the values of Km, Vmax, [E]0 and k2 obtained
by using method 3 for cases 3, 1 and 4, respectively, starting at different tθ -val-
ues and in table 9 we indicate the values of Km, Vmax, [E]0 and k2 obtained by
using method 2 for case 1 for different tθ -values. Note the good correspondence
between these values and the true ones

Because working with experimental progress curves we do not known the
values of the kinetic parameters, we will not be never sure which among the
different suitable tθ -values furnishes the more accurate results. Thus, to take the
average value of the kinetic parameters obtained for some different tθ -values will
furnish, generally, the most reliable results. Thus, in examples in tables 8 and 9,
the average values of Km, Vmax and [E]0 taking as tθ -values all of them giving
similar results (those ones after doted line in table 8 and up to doted line in table
9) and the corresponding k2 value obtained from the average values of Vmax and
[E]0 are indicated in the table caption. This same procedure could be used for
any case and any method.
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Table 8
Values of Km, Vmax and [E]0 for case 7 obtained from the time progress curve of S, i.e. by
using method 3, but starting at the different tθ -values on the first column. Note that as tθ
can be taken any time after 6.2993 ms. The true values of Km, Vmax, [E]0 and k2 are 1.25,
100, 10µM and 10 s−1, respectively. Before the third tθ -value no reaction time should be taken
as tθ -value due that the corresponding values obtained for the kinetic parameters greatly dif-
fer from those on the third row. That is marked by a dot line (· · · · · · ). The average values
of each of Km, Vmax and [E]0 from the third row are Km = 1.1317 ± 0.0001µM, Vmax =
97.968 ± 0.010µM and [E]0 = 9.8016 ± 0.0009µM and, therefore, we obtain for k2 the value

9.9951 ± 0.0052 s−1.

tθ (s) Km (µM) Vmax(µM s−1) [E]0(µM) k2 (s−1)

0.0104 (2.7285 ± 0.1061) × 10−6 9.4607 ± 0.0372 1.4938 ± 0.0641 6.3333 ± 0.2967
2.8816 (4.0563 ± 0.0111) × 10−4 58.140 ± 0.002 6.6624 ± 0.0184 8.7266 ± 0.0244

....................................................................................................................................................
6.2993 1.1116 ± 0.0004 97.466 ± 0.034 9.7656 ± 0.0012 9.9805 ± 0.0047

10. 000 1.1503 ± 0.0001 98.328 ± 0.003 9.8232 ± 0.0011 10.010 ± 0.002
40.000 1.1287 ± 0.0001 98.135 ± 0.002 9.8232 ± 0.0006 9.9901 ± 0.0009
60.000 1.1361 ± 0.0001 97.943 ± 0.001 9.7943 ± 0.0004 10.000 ± 0.001

Table 9
Values of Km, Vmax, [E]0 and k2 for case 1 obtained from the time progress curve
of S, i.e. by using method 2, but starting at the different tθ -values on the first col-
umn. On the second column the corresponding [S]θ -values are shown. The true values
of Km, Vmax, [E]0 and k2 are 1.25, 1, 0.1µM and 1 s−1, respectively. After the pen-
ultimate tθ -value no reaction time should be taken as s tθ -value due that the corre-
sponding values obtained for the kinetic parameters greatly differ from the those on
penultimate row. That is marked by a dotted line (. . . . . . . . . ). The average values of
Km, Vmax and [E]0, excluding those on the last row are: Km = 1.2817 ± 0.0001µM,
Vmax = 1.0109 ± 0.0001µM and [E]0 = 0.0748 ± 0.0001µM and, therefore, we

obtain for k2 the value 13.515 ± 0.020 s−1.

tθ (s) [S]θ (µM) Km (µM) Vm(µM s−1) [E]0(µM) k2 (s−1)

0.0103 9.9028 1.3314 ± 0.0001 1.0317 ± 0.0001 0.0537 ± 0.0001 19.212 ± 0.038
2.0060 8.1573 1.3283 ± 0.0001 1.0303 ± 0.0001 0.0548 ± 0.0001 18.8011 ± 0.037
5.0029 5.6253 1.3205 ± 0.0001 1.0275 ± 0.0001 0.0588 ± 0.0001 13.923 ± 0.021
10.0031 1.9669 1.2859 ± 0.0001 1.0128 ± 0.0001 0.0738 ± 0.0001 10.506 ± 0.012
13.0015 0.5732 1.2351 ± 0.0001 0.9919 ± 0.0001 0.0964 ± 0.0001 8.6553 ± 0.0085
15.0116 0.17034 1.1892 ± 0.0001 0.9712 ± 0.0001 0.1146 ± 0.0001 8.4747 ± 0.0083
....................................................................................................................................................
17.0085 0.0421 0.6022 ± 0.0003 0.6331 ± 0.0002 0.2478 ± 0.0002 2.5549 ± 0.0029

4.7. Final remarks

In this contribution, we have carried out an analysis of the enzyme systems
evolving according to reaction mechanism in scheme 1 and we have obtained,
among other results, integrated rate equations [equation (20) and that result-
ing inserting if in to equation (11)] that include, as particular cases (when
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[E]0/Km � 1) the actual integrated rate equations [equations (23) and (25)] for
the same type of enzyme systems. Therefore, Eqs. (23) and (25) will furnish suit-
able results when applied to an enzyme system when [E]0/Km � 1 (see table
5). Moreover, in all studied cases, the actual method based in the time progress
curve of P [we call as method IM(P)] give better results than the actual one
based on the time progress curve of S [we call as method IM(S)]; both methods
described in Segel [3] and summarised above.

Besides to establish the applicability limits of the actual integrated rate
Michaelis–Menten equation, our analysis allows us to suggest three different
methods (methods 1–3) which give suitable results irrespective of the relative val-
ues of the initial enzyme and substrate concentrations and the Michaelis–Menten
constant, although the accuracy of the results increases when [E]0/Km decreases
and, for a given value of [E]0/Km, it increases when the ratio [E]0/[S]0
decreases (see table 5). Methods 1–3 allow to determine not only Km and Vmax,
but also [E]0 and, therefore, from Vmax and [E]0, of k2. Our analysis requires to
fit the corresponding experimental (simulated in this paper) time progress curves
from a certain reaction time, tθ , generally low, that the worker can chose arbi-
trarily and then confirm if it is or not adequate, as explained above. Gener-
ally, the decreasing order in the accuracy of the results by using methods 1–3
is: method 1 ≈ method 3 > method 2, and by using any of these methods, the
decreasing order in the accuracy of the results is generally: Vmax > Km > [E]0 ≈
k2.

In those cases in which methods IM(S) and IM(P) furnishes acceptable
results (i.e., when [E]0/Km � 1, e.g. cases 1 and 3) the goodness of the results
obtained for Km and Vmax by using methods IM(P) and IM(S) are similar or
worse, respectively, than those ones obtained with any of methods 1–3. In those
cases in which [E]0/Km is not much less then the unity (e.g. cases 4 and 7) the
use (not recommendable) of methods IM(S) and IM(P) is only viable if it is pos-
sible to have a curve portion in the corresponding plot approximately linear with
negative slope and they yield enormously erroneous values for Km and Vmax.
Nevertheless, even in these cases, the use of any of our methods 1–3 renders suit-
able estimates of the real values of Vmax and Km (e.g. cases 4 and 7 in table 5,
for which [E]0/Km = 0.8 and [E]0/Km = 8, respectively).

The analysis carried out here to obtain alternative integrated rate equations
and methods to obtain the values of the kinetic parameters and initial enzyme
concentration for enzyme systems evolving according to the reaction mecha-
nism in scheme 1 could be extrapolated to those enzyme systems fitting to more
complex mechanisms, e.g. those involving product inhibition [3,4,6,11,12], unsta-
ble enzymes [7], coupled reactions [18], etc. although the more complex is the
enzyme system, the more laborious will result the analysis.
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